A Note on Revised Szeged Index of Graph Operations
author
Abstract:
Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper, we compute the revised Szeged index of the join and corona product of graphs.
similar resources
A note on hyper-Zagreb index of graph operations
In this paper, the Hyper - Zagreb index of the Cartesian product, composition and corona product of graphs are computed. These corrects some errors in G. H. Shirdel et al.[11].
full texta note on hyper-zagreb index of graph operations
in this paper, the hyper - zagreb index of the cartesian product, composition and corona product of graphs are computed. these corrects some errors in g. h. shirdel et al.[11].
full textOn the revised edge-Szeged index of graphs
The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...
full textThe Normalized Revised Szeged Index
In chemical graph theory, many graph parameters, or topological indices, were proposed as estimators of molecular structural properties. Often several variants of an index are considered. The aim is to extend the original concept to larger families of graphs than initially considered, or to make it more precise and discriminant, or yet to make its range of values similar to that of another inde...
full textRevised Szeged Index of Product Graphs
The Szeged index of a graph G is defined as S z(G) = ∑ uv = e ∈ E(G) nu(e)nv(e), where nu(e) is number of vertices of G whose distance to the vertex u is less than the distance to the vertex v in G. Similarly, the revised Szeged index of G is defined as S z∗(G) = ∑ uv = e ∈ E(G) ( nu(e) + nG(e) 2 ) ( nv(e) + nG(e) 2 ) , where nG(e) is the number of equidistant vertices of e in G. In this paper,...
full textWeighted Szeged Indices of Some Graph Operations
In this paper, the weighted Szeged indices of Cartesian product and Corona product of two connected graphs are obtained. Using the results obtained here, the weighted Szeged indices of the hypercube of dimension n, Hamming graph, C4 nanotubes, nanotorus, grid, t−fold bristled, sunlet, fan, wheel, bottleneck graphs and some classes of bridge graphs are computed.
full textMy Resources
Journal title
volume 9 issue 1
pages 57- 63
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023